Graduate Comprehensive Examination

Department of Mathematical Sciences

MA541, Probability and Mathematical Statistics II

Answer ALL questions in THREE hours.

May 9, 2017

1. Let $X_1, \ldots, X_n \stackrel{ind}{\sim} \text{Poisson}(\lambda)$. Consider the class of estimators,

$$T_{\omega} = \omega \bar{X} + (1 - \omega)S^2, 0 \le \omega \le 1,$$

where \bar{X} is the sample mean and S^2 the sample variance.

- a. What is the size of this class of estimators and what key property does it have?
- b. Find the minimum variance of T_{ω} as a function of ω .
- c. Show that $E(S^4) > \lambda/n + \lambda^2$.
- 2. Let $X_1, \ldots, X_n \mid \mu, \sigma^2 \stackrel{iid}{\sim} \text{Normal}(\mu, \sigma^2)$. Consider the following interval estimator $(\bar{X} kS, \bar{X} + kS)$ of μ , where k is a positive constant, \bar{X} is the sample mean and S^2 is the sample variance.
 - a. Find the distribution of S.
 - b. Find the probability content of the interval conditional on S=s.
 - c. Find the probability content of this interval, without conditioning on S, in its simplest form.
- 3. Let $X_1, \ldots, X_{2n} \mid \theta \stackrel{ind}{\sim} \text{Uniform}(0, \theta), \theta > 0$. Suppose the first n values are observed and the next n values are missing. Let T denote the largest observation among the missing values.
 - a. Find a pivotal quantity that is an ancillary statistic.
 - b. Find the distribution of the pivotal quantity.
 - c. Find the $100(1-\alpha)\%$ shortest prediction interval for T.

- 4. An item on a questionnaire asks n respondents to report the value of one of two positive random variables, X or SX. Each respondent actually reports $Z = S^Y X$, where $Y \sim \text{Bernoulli}(p)$, p known. Here, X and S are independent and the distribution of S is completely known, E(S) = 1 and $\text{Var}(S) = \gamma^2$. Inference is required about the mean, μ , of X with $\text{Var}(X) = \sigma^2$ known. Let $\hat{\mu}$ denote an unbiased estimator of μ .
 - a. Obtain a form for $\hat{\mu}$.
 - b. Find $Var(\hat{\mu})$.
- 5. Suppose Y is a random variable from a Weibull distribution with shape parameters λ and scale parameter θ , i.e., $Y \sim WB(\theta, \lambda)$, with its pdf as

$$f(y \mid \theta, \lambda) = \frac{\lambda y^{\lambda-1}}{\theta^{\lambda}} \exp(-(\frac{y}{\theta})^{\lambda}), \quad y > 0,$$

where $\theta > 0$ and $\lambda > 0$.

- a. Show that if $\lambda = \lambda_0 > 0$ is known, then WB(θ , λ_0), $\theta > 0$ is a member of the exponential family. What if λ is unknown? Justify.
- b. Derive the MLE of the parameter θ when $\lambda = \lambda_0$ is known. For this case, obtain the asymptotic distribution of the MLE of θ .
- c. Derive the MLE of the parameters θ and λ when both are unknown.
- 6. Consider the following pdf

$$f(x,y \mid \sigma) = \frac{\sigma^2}{\pi\sqrt{3}} \exp\left\{-\frac{2\sigma^2}{3} \left[(x-1)^2 + (y-2)^2 - (x-1)(y-2) \right] \right\} \quad \text{for } (x,y) \in \mathbb{R}^2,$$

where σ is the unknown parameter. Suppose that $(X_1, Y_1), \ldots, (X_n, Y_n)$ are i.i.d. with common pdf $f(x, y \mid \sigma)$.

a. Find the form of the UMP level α test for

$$\overline{H_0: \sigma \leq \sigma_0}$$
 versus $\overline{H_1: \sigma > \sigma_0}$.

b. Show that there is no UMP level α test for

$$H_0: \sigma = \sigma_0 \text{ versus } H_1: \sigma \neq \sigma_0$$

with $0 < \alpha < 1$ fixed.

c. Derive the level α likelihood ratio test for

$$H_0: \sigma = \sigma_0 \text{ versus } H_1: \sigma \neq \sigma_0$$

in its simplest implementable form, with $0 < \alpha < 1$ fixed.